mathematica12中文版是一款強(qiáng)大的數(shù)據(jù)管理工具,有著先進(jìn)的編程操作,讓用戶更好的進(jìn)行計(jì)算機(jī)的操作,更加直觀的看到計(jì)算數(shù)據(jù)和曲線圖形的報(bào)表,目前又增加了很多全新的領(lǐng)域幫助u用戶打造專業(yè)的系統(tǒng),有需要的用戶就來極光下載站體驗(yàn)一番吧!
Mathematica是一款科學(xué)計(jì)算軟件,很好地結(jié)合了數(shù)值和符號(hào)計(jì)算引擎、圖形系統(tǒng)、編程語言、文本系統(tǒng)、和與其他應(yīng)用程序的高級(jí)連接。很多功能在相應(yīng)領(lǐng)域內(nèi)處于世界領(lǐng)先地位,它也是使用最廣泛的數(shù)學(xué)軟件之一。Mathematica的發(fā)布標(biāo)志著現(xiàn)代科技計(jì)算的開始。Mathematica是世界上通用計(jì)算系統(tǒng)中最強(qiáng)大的系統(tǒng)。自從1988發(fā)布以來,它已經(jīng)對(duì)如何在科技和其它領(lǐng)域運(yùn)用計(jì)算機(jī)產(chǎn)生了深刻的影響。
1.支持符號(hào)階的導(dǎo)數(shù)
2.高分辨率地理高程數(shù)據(jù)
3.擴(kuò)展了對(duì)計(jì)算攝影和計(jì)算顯微鏡支持
4.130多個(gè)跨越廣泛應(yīng)用領(lǐng)域的全新函數(shù)
5.全新響應(yīng)式設(shè)計(jì)應(yīng)用于全部文檔和在線范例
6.AutoCopy 在云端完美分布獨(dú)立可編輯的筆記本
7.ImageGraphics 用于找出近似于位圖的矢量圖形
8.自動(dòng)執(zhí)行的 Wolfram 語言腳本也適用于 Windows
9.在二維和三維圖像直接運(yùn)用算法(利用“*”或“-”等)
10.NetModel 用于訪問日益增長(zhǎng)的訓(xùn)練和未經(jīng)訓(xùn)練的神經(jīng)網(wǎng)絡(luò)存儲(chǔ)庫
11.用基于筆記本的腳本編輯器創(chuàng)建 WolframScript 的 .wls 文件
12.全新穩(wěn)健空間統(tǒng)計(jì),包括 WinsorizedMean 和 SpatialMedian
13.對(duì)于面向網(wǎng)頁查詢、網(wǎng)頁圖像查詢和文本翻譯的外部服務(wù)的無縫整合
14.廣泛的 PersistentValue 系統(tǒng)用于將會(huì)話間的值存儲(chǔ)于本地和云端等
15.空間填充和分形區(qū)域構(gòu)建器,例如 HilbertCurve 和 SierpinskiMesh
16.FeatureSpacePlot 用于基于機(jī)器學(xué)習(xí)的數(shù)據(jù)、圖像和文本等空間可視化
17.用 AudioCapture 直接在筆記本中記錄音頻,并可直接對(duì)其進(jìn)行處理和分析
18.20個(gè)全新神經(jīng)網(wǎng)絡(luò)層類型,以及對(duì)循環(huán)神經(jīng)網(wǎng)絡(luò)和可變長(zhǎng)度序列的無縫支持
19.GeoBubbleChart 以及對(duì) Callout 和 ScalingFunctions 等函數(shù)的擴(kuò)展支持
20.新增的機(jī)器學(xué)習(xí)函數(shù),包括 SequencePredict、ActiveClassification 和 ActivePrediction
即時(shí)實(shí)時(shí)數(shù)據(jù)
mathematica可以訪問廣泛的wolfram知識(shí)庫,其中包括數(shù)千個(gè)領(lǐng)域的最新實(shí)時(shí)數(shù)據(jù)
該代碼具有意義
憑借其直觀的類似英語的函數(shù)名稱和一致的設(shè)計(jì),wolfram語言易于閱讀,編寫和學(xué)習(xí)
無縫云集成
mathematica現(xiàn)在與云無縫集成 - 允許在獨(dú)特而強(qiáng)大的混合云/桌面環(huán)境中實(shí)現(xiàn)共享,云計(jì)算等
讓您的結(jié)果看起來最好
憑借先進(jìn)的計(jì)算美學(xué)和屢獲殊榮的設(shè)計(jì),mathematica精美呈現(xiàn)您的結(jié)果 - 即時(shí)創(chuàng)建頂級(jí)交互式可視化和出版品質(zhì)的文檔
一切都是工業(yè)實(shí)力
mathematica旨在提供工業(yè)強(qiáng)度的能力 - 在所有領(lǐng)域都具有穩(wěn)健,高效的算法,能夠處理大規(guī)模問題,并行性,gpu計(jì)算等等
強(qiáng)大的易用性
mathematica利用其算法能力 - 以及wolfram語言的精心設(shè)計(jì) - 創(chuàng)建一個(gè)獨(dú)特易用的系統(tǒng),具有預(yù)測(cè)建議,自然語言輸入等等
不僅僅是數(shù)學(xué),更不僅僅是數(shù)學(xué) - 而是一切
mathematica基于三十年的發(fā)展歷程,擅長(zhǎng)于所有技術(shù)計(jì)算領(lǐng)域 - 包括神經(jīng)網(wǎng)絡(luò),機(jī)器學(xué)習(xí),圖像處理,幾何,數(shù)據(jù)科學(xué),可視化等等
連接到所有東西
mathematica可以連接到一切:文件格式(180+),其他語言,wolfram數(shù)據(jù)刪除,api,數(shù)據(jù)庫,程序,物聯(lián)網(wǎng),設(shè)備甚至分布式實(shí)例
文檔以及代碼
mathematica使用wolfram notebook界面,它允許您組織在包含文本,可運(yùn)行代碼,動(dòng)態(tài)圖形,用戶界面等豐富文檔中執(zhí)行的所有操作
150,000+示例
通過文檔中心的150,000多個(gè)示例,wolfram demonstrations project中的10,000多個(gè)開放代碼演示以及大量其他資源,幫助幾乎所有項(xiàng)目
一個(gè)龐大的系統(tǒng),所有集成的
mathematica擁有近5000個(gè)內(nèi)置功能,涵蓋了技術(shù)計(jì)算的所有領(lǐng)域 - 所有這些功能都經(jīng)過精心集成,因此它們可以完美地結(jié)合在一起,并且都包含在完全集成的mathematica系統(tǒng)中
無法想象的算法power
mathematica在所有領(lǐng)域內(nèi)構(gòu)建了前所未有的強(qiáng)大算法 - 其中許多算法使用獨(dú)特的開發(fā)方法和wolfram語言的獨(dú)特功能在wolfram中創(chuàng)建。超級(jí)功能之前的高級(jí)別,元算法... mathematica提供了一個(gè)逐步更高級(jí)別的環(huán)境,盡可能自動(dòng)化 - 這樣您可以盡可能高效地工作
【基本運(yùn)算】
a+
mathematica數(shù)學(xué)實(shí)驗(yàn)(第2版)
mathematica數(shù)學(xué)實(shí)驗(yàn)(第2版)
b+c 加
a-b 減
a b c 或 a*b*c 乘
a/b 除
-a 負(fù)號(hào)
a^b 次方
Mathematica 數(shù)字的形式
256 整數(shù)
2.56 實(shí)數(shù)
11/35 分?jǐn)?shù)
2+6I 復(fù)數(shù)
【常用的數(shù)學(xué)常數(shù)】
Pi 圓周率,π=3.141592654…
E 歐拉常數(shù),e=2.71828182…
Degree 角度轉(zhuǎn)換弧度的常數(shù),Pi/180
I 虛數(shù)單位,其值為 √-1
Infinity 無限大
指定之前計(jì)算結(jié)果的方法
% 前一個(gè)運(yùn)算結(jié)果
%% 前二個(gè)運(yùn)算結(jié)果
%%…%(n個(gè)%) 前n個(gè)運(yùn)算結(jié)果
%n 或 Out[n] 前n個(gè)運(yùn)算結(jié)果
【復(fù)數(shù)的運(yùn)算指令】
a+bI 復(fù)數(shù)
Conjugate[a+bI] 共軛復(fù)數(shù)
Re[z], Im[z] 復(fù)數(shù)z的實(shí)數(shù)/虛數(shù)部分
Abs[z] 復(fù)數(shù)z的大小或模數(shù)(Modulus)
Arg[z] 復(fù)數(shù)z的幅角(Argument)
Mathematica 輸出的控制指令
expr1; expr2; expr3 做數(shù)個(gè)運(yùn)算,但只印出最后一個(gè)運(yùn)算的結(jié)果
expr1; expr2; expr3; 做數(shù)個(gè)運(yùn)算,但都不印出結(jié)果
expr; 做運(yùn)算,但不印出結(jié)果
【常用數(shù)學(xué)函數(shù)】
Sin[x],Cos[x],Tan[x],Cot[x],Sec[x],Csc[x] 三角函數(shù),其引數(shù)的單位為弧度
Sinh[x],Cosh[x],Tanh[x],… 雙曲函數(shù)
ArcSin[x],ArcCos[x],ArcTan[x] 反三角函數(shù)
ArcCot[x],ArcSec[x],ArcCsc[x]
ArcSinh[x],ArcCosh[x],ArcTanh[x],… 反雙曲函數(shù)
Sqrt[x] 根號(hào)
Exp[x] 指數(shù)
Log[x] 自然對(duì)數(shù)
Log[a,x] 以a為底的對(duì)數(shù)
Abs[x] 絕對(duì)值
Round[x] 最接近x的整數(shù)
Floor[x] 小于或等于x的最大整數(shù)
Ceiling[x] 大于或等于x的最小整數(shù)
Mod[a,b] a/b所得的余數(shù)
n! 階乘
Random[] 0至1之間的隨機(jī)數(shù)(最新版本已經(jīng)不用這個(gè)函數(shù),改為使用RandomReal[])
Max[a,b,c,...],Min[a,b,c,…] a,b,c,…的極大/極小值
【數(shù)值設(shè)定】
x=a 將變數(shù)x的值設(shè)為a
x=y=b 將變數(shù)x和y的值均設(shè)為b
x=. 或 Clear[x] 除去變數(shù)x所存的值
變數(shù)使用的一些法則
xy 中間沒有空格,視為變數(shù)xy
x y x乘上y
3x 3乘上x
x3 變數(shù)x3
x^2y 為 x^2 y次方運(yùn)算子比乘法的運(yùn)算子有較高的處理順序
【四個(gè)處理指令】
Expand[expr] 將 expr展開
Factor[expr] 將 expr因式分解
Simplify[expr] 將 expr化簡(jiǎn)成精簡(jiǎn)的式子
FullSimplify[expr] Mathematica 會(huì)嘗試更多的化簡(jiǎn)公式,將 expr化成更精簡(jiǎn)的式子
【多項(xiàng)式轉(zhuǎn)換】
ExpandAll[expr] 把算式全部展開
Together[expr] 將 expr各項(xiàng)通分在并成一項(xiàng)
Apart[expr] 把分式拆開成數(shù)項(xiàng)分式的和
Apart[expr,var] 視var以外的變數(shù)為常數(shù),將 expr拆成數(shù)項(xiàng)的和
Cancel[expr] 把分子和分母共同的因子消去
【分母分子運(yùn)算】
Denominator[expr] 取出expr的分母
Numerator[expr] 取出expr的分子
ExpandDenominator[expr] 展開expr的分母
ExpandNumerator[expr] 展開expr的分子
【轉(zhuǎn)換函數(shù)】
Collect[expr,x] 將 expr表示成x的多項(xiàng)式,
如
Collect[expr,{x,y,…}] 將 expr分別表示成 x,y,…的多項(xiàng)式
FactorTerms[expr] 將 expr的數(shù)值因子提出,
如 4x+2=2(2x+1)
FactorTerms[expr,x] 將 expr中把所有不包含x項(xiàng)的因子提出
FactorTerms[expr,{x,y,…}] 將 expr中把所有不包含{x,y,...}項(xiàng)的因子提出
【函數(shù)指數(shù)運(yùn)算】
TrigExpand[expr] 將三角函數(shù)展開
TrigFactor[expr] 將三角函數(shù)所組成的數(shù)學(xué)式因式分解
TrigReduce[expr] 將相乘或次方的三角函數(shù)化成一次方的基本三角函數(shù)之組合
ExpToTrig[expr] 將指數(shù)函數(shù)化成三角函數(shù)或雙曲函數(shù)
TrigToExp[expr] 將三角函數(shù)或雙曲函數(shù)化成指數(shù)函數(shù)
【次方乘積】
ComplexExpand[expr] 假設(shè)所有的變數(shù)都是實(shí)數(shù)來對(duì) expr展開
ComplexExpand[expr,{x,y,…}] 假設(shè)x,y,..等變數(shù)均為復(fù)數(shù)來對(duì) expr展開
PowerExpand[expr] 將
【系數(shù)最高次方】
Coefficient[expr,form] 于 expr中form的系數(shù)
Exponent[expr,form] 于 expr中form的最高次方
Part[expr,n] 或 expr[[n]] 在 expr項(xiàng)中第n個(gè)項(xiàng)
【代換運(yùn)算子】
expr/.x->value 將 expr里所有的x均代換成value
expr/.{x->value1,y->value2,…} 執(zhí)行數(shù)個(gè)不同變數(shù)的代換
expr/.{{x->value1},{x->value2},…} 將 expr代入不同的x值
expr//.{x->value1,y->value2,…} 重復(fù)代換到 expr不再改變?yōu)橹?/p>
【求解方程式】
Solve[lhs==rhs,x] 解方程式lhs==rhs,求x
Nsolve[lhs==rhs,x] 解方程式lhs==rhs的數(shù)值解
Solve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解聯(lián)立方程式,求x,y,…
NSolve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解聯(lián)立方程式的數(shù)值解
FindRoot[lhs==rhs,{x,x0}] 由初始點(diǎn)x0求lhs==rhs的根
【四種括號(hào)】
(term) 圓括號(hào),括號(hào)內(nèi)的term先計(jì)算
f[x] 方括號(hào),內(nèi)放函數(shù)的引數(shù)
{x,y,z} 大括號(hào)或串列括號(hào),內(nèi)放串列的元素
p[[i ]] 或 Part[p,i] 雙方括號(hào),p的第i項(xiàng)元素
p[[i,j]] 或 Part[p,i,j] p的第i項(xiàng)第j個(gè)元素
【縮短輸出指令】
expr//Short 顯示一行的計(jì)算結(jié)果
Short[expr,n] 顯示n行的計(jì)算結(jié)果
Command; 執(zhí)行command,但不列出結(jié)果
【查詢物件】
Command 查詢Command的語法及說明
Command 查詢Command的語法和屬性及選擇項(xiàng)
Aaaa* 查詢所有開頭為Aaaa的物件
【定義查詢清除】
f[x_]= expr 立即定義函數(shù)f[x]
f[x_]:= expr 延遲定義函數(shù)f[x]
f[x_,y_,…] 函數(shù)f有兩個(gè)以上的引數(shù)
?f 查詢函數(shù)f的定義
Clear[f] 或 f=. 清除f的定義
Remove[f] 將f自系統(tǒng)中清除掉
【含有預(yù)設(shè)值的Pattern】
a_+b_. b的預(yù)設(shè)值為0,即若b從缺,則b以0代替
x_ y_ y的預(yù)設(shè)值為1
x_^y_ y的預(yù)設(shè)值為1
【條件式的自訂函數(shù)】
lhs:=rhs/;condition 當(dāng)condition成立時(shí),lhs才會(huì)定義成rhs
【If指令】
If[test,then,else] 若test為真,則回應(yīng)then,否則回應(yīng)else
If[test,then,else,unknow] 同上,若test無法判定真或假時(shí),則回應(yīng)unknow
【極限】
Limit[expr,x->c] 當(dāng)x趨近c(diǎn)時(shí),求expr的極限
Limit[expr,x->c,Direction->1]
Limit[expr,x->c,Direction->-1]
【微分】
D[f,x] 函數(shù)f對(duì)x作微分
D[f,x1,x2,…] 函數(shù)f對(duì)x1,x2,…作微分
D[f,{x,n}] 函數(shù)f對(duì)x微分n次
D[f,x,NonConstants->{y,z,…}] 函數(shù)f對(duì)x作微分,將y,z,…視為x的函數(shù)
【全微分】
Dt[f] 全微分df
Dt[f,x] 全微分
Dt[f,x1,x2,…] 全微分
Dt[f,x,Constants->{c1,c2,…}] 全微分,視c1,c2,…為常數(shù)
【不定積分】
Integrate[f,x] 不定積分 ∫f dx
【定積分】
Integrate[f,{x,xmin,xmax}] 定積分
Integrate[f,{x,xmin,xmax},{y,ymin,ymax}] 定積分
【列之和與積】
Sum[f,{i,imin,imax}] 求和
Sum[f,{i,imin,imax,di}] 求數(shù)列和,引數(shù)i以di遞增
Sum[f,{i,imin,imax},{j,jmin,jmax}]
Product[f,{i,imin,imax}] 求積
Product[f,{i,imin,imax,di}] 求數(shù)列之積,引數(shù)i以di遞增
Product[f,{i,imin,imax},{j,jmin,jmax}]
【泰勒展開式】
Series[expr,{x,x0,n}] 對(duì) expr于x0點(diǎn)作泰勒級(jí)數(shù)展開至(x-x0)n項(xiàng)
Series[expr,{x,x0,m},{y,y0,n}] 對(duì)x0和y0展開
【關(guān)系運(yùn)算子】
a==b 等于
a>b 大于
a>=b 大于等于
a<b 小于
a<=b 小于等于
a!=b 不等于
【邏輯運(yùn)算子】
!p not
p||q||… or
p&&q&&… and
Xor[p,q,…] exclusive or
LogicalExpand[expr] 將邏輯表示式展開
【二維繪圖指令】
Plot[f,{x,xmin,xmax}]
畫出f在xmin到xmax之間的圖形
Plot[{f1,f2,…},{x,xmin,xmax}]
【同時(shí)畫出數(shù)個(gè)函數(shù)圖形】
Plot[f,{x,xmin,xmax},option->value]
指定特殊的繪圖選項(xiàng),畫出函數(shù)f的圖形
Plot幾種指令
【選項(xiàng) 預(yù)設(shè)值 說明】
AspectRatio 1/GoldenRatio 圖形高和寬之比例,高/寬
Axes True 是否把坐標(biāo)軸畫出
AxesLabel Automatic 為坐標(biāo)軸貼上標(biāo)記,若設(shè)定為
AxesLabel->{?ylabel?},則為y軸之標(biāo)記。若設(shè)定為AxesLabel->{?xlabel?,?ylabel?}
,則為{x軸,y軸}的標(biāo)記
Axesorigin Automatic 坐標(biāo)軸的相交的點(diǎn)
DefaultFont $DefaultFont 圖形里文字的預(yù)設(shè)字型
Frame False 是否將圖形加上外框
FrameLabel False 從x軸下方依順時(shí)針方向加上圖形外框的標(biāo)記
FrameTicks Automatic (如果Frame設(shè)為True)為外框加上刻度;
None則不加刻度
GridLines None 設(shè)Automatic則于主要刻度上加上網(wǎng)格線
PlotLabel None 整張圖之圖名
PlotRange Automatic 指定y方向畫圖的范圍
Ticks Automatic 坐標(biāo)軸之刻度,設(shè)None則沒有刻度記號(hào)出現(xiàn)
※“Automatic、None、True、False”為Mathmatica常用的選項(xiàng)設(shè)定,其代表意義分別為“使用內(nèi)部設(shè)定、不包含此項(xiàng)、作此項(xiàng)目、不作此項(xiàng)目”。
【串列繪圖】
ListPlot[{y1,y2,…}] 畫出{1,y1},{2,y2},…的點(diǎn)
ListPlot[{{x1,y1},{x2,y2},…}] 畫出{x1,y1},{x2,y2},…的點(diǎn)
ListPlot[{{x1,y1},{x2,y2},…},PlotJoined->True] 把畫出來的點(diǎn)用線段連接
【繪圖顏色指定】
Plot[{f1,f2,…},{x,xmin,xmax},
PlotStyle->{RGBColor[r1,g1,b1],RGBColor[r2,g2,b2],…}]
【彩色繪圖】
Plot[{f1,f2,…},{x,xmin,xmax},
PlotStyle->{GrayLevel,GrayLevel[j],…}]
【灰階繪圖】
圖形處理指令
Show[plot] 重畫一個(gè)圖
Show[plot1,plot2,…] 將數(shù)張圖并成一張
Show[plot,option->opt] 加入選項(xiàng)
【圖形之排列】
Show[GraphicsArray[{plot1,plot2,…}]] 將圖形橫向排列
Show[GraphicsArray[{,,…}]] 將圖形垂直排列
Show[GraphicsArray[{{plot1,plot2,…},…}]] 將圖形成二維矩陣式排列
【二維參數(shù)圖】
ParametricPlot[{f1,f2},{t,tmin,tmax}]
【參數(shù)繪圖】
ParametricPlot[{{f1,f2},{g1,g2},…},{t,tmin,tmax}]
【同時(shí)繪數(shù)個(gè)參數(shù)圖】
ParametricPlot[{f1,f2},{t,tmin,tmax},AspectRatio->Automatic]
保持曲線的真正形狀,即x,y坐標(biāo)比為1:1
【等高線圖】
ContourPlot[f,{x,xmin,xmax},{y,ymin,ymax}]
于指定范圍之內(nèi)畫出f的等高線圖
ContourPlot選項(xiàng)
【選項(xiàng) 預(yù)設(shè)值 說明】
ColorFunction Automatic 上色的預(yù)設(shè)值為灰階,選Hue則為系列色彩
Contours 10 等高線的數(shù)目。設(shè)Contours->{z1,z2,…}則指定等高值為z1,z2,…
ContourShading True Contour的上色,選False則不上色
PlotRange Automatic 高度z值的范圍,也可指定{zmin,zmax}
mathematica12百度云提取碼: 6fe8
mathematica是非常好用受歡迎的編程軟件,軟件有著眾多強(qiáng)大的功能,可以幫助用戶編程語言、計(jì)算引擎、圖形系統(tǒng)等,用戶可以讓運(yùn)算法則自動(dòng)計(jì)算,同時(shí)創(chuàng)造一個(gè)與數(shù)據(jù)世界相連接的新方式,有需要的朋友不妨下載試試吧!
mathematica7.0安裝包 官方漢化版
3.03 GB/ 簡(jiǎn)體中文
官方漢化版
mathematica12中文版 官方版
2.96 GB/ 簡(jiǎn)體中文
官方版
mathematica11電腦版 v11.0.1 官方版
2.86 GB/ 簡(jiǎn)體中文
v11.0.1 官方版
mathematica8安裝包 中文版
892.00 MB/ 簡(jiǎn)體中文
中文版
mathematica10.3版本 v10.3 電腦版
2.35 GB/ 簡(jiǎn)體中文
v10.3 電腦版
mathematica10電腦版 官方版
2.35 GB/ 簡(jiǎn)體中文
官方版
mathematica9官方版 v9.0.1 電腦版
1.38 GB/ 簡(jiǎn)體中文
v9.0.1 電腦版
mathematica最新版本 官方版
3.04 GB/ 簡(jiǎn)體中文
官方版
網(wǎng)友評(píng)論